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Summary of This Work

The Theme: Use a convex analysis perspective to view
hyperspectral linear unmixing.

provide formulations & new interpretations for
- dimension reduction
- Craig’s belief [Craig’94]
- Winter’s belief [Winter’99]

Theory: prove that both Craig’s & Winter’s beliefs are optimal in
the pure-pixel case.

Algorithms: develop convex optimization based approximations for
Craig’s & Winter’s beliefs.
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Problem Statement for Hyperspectral Unmixing

Observed pixel vector: (linear mixing model)

x[n] = As[n] =
N∑

i=1

si[n]ai, n = 1, . . . , L (1)

A = [ a1, . . . ,aN ] ∈ RM×N , ai is the ith endmember signature,

s[n] = [ s1[n], . . . , sN [n] ]T is the abundance vector of pixel n,

M = no. of spectral bands, N = no. of endmember signatures, &
L = no. of pixels.
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Problem Statement for Hyperspectral Unmixing

Observed pixel vector: (linear mixing model)

x[n] = As[n] =
N∑

i=1

si[n]ai, n = 1, . . . , L (2)

Some general assumptions:

(A1) (Non-negativity) si[n] ≥ 0 for all i and n.

(A2) (Full-additivity)
∑N

i=1 si[n] = 1 for all n.

(A3) min{L,M} ≥ N and a1, . . . ,aN are linearly independent.
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Affine Hull

The affine hull of {a1, . . . ,aN} ⊂ RM is defined as:

aff{a1, . . . ,aN} =
{

x =
N∑

i=1

θiai

∣∣∣∣ θ ∈ RN ,
N∑

i=1

θi = 1
}

.

An affine hull can always be represented by

A(C,d) ,
{

x = Cα + d
∣∣ α ∈ RP

}
for some C ∈ RN×P , d ∈ RN , & P ≤ N − 1.

Recall x[n] =
∑N

i=1 si[n]ai. Under (A2) and (A3), we have

x[n] ∈ aff{a1, . . . ,aN} = A(C,d), ∀n = 1, . . . , L,

with P = N − 1.
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An Geometry Illustration for N = 3
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An Geometry Illustration for N = 3
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How to Get C,d?

Lemma 1 (Affine set fitting) [Chan’08]

Under (A2) and (A3), we can show that

A(C,d) = aff{x[1], . . . ,x[L]}.

Moreover, (C,d) can be obtained from x[1], . . . ,x[L] by

d =
1
L

L∑
n=1

x[n], C = [q1(UUT ), q2(UUT ), . . . , qN−1(UUT )],

where U = [ x[1]− d, . . . ,x[L]− d ] ∈ RM×L, and qi(R) denotes the
eigenvector associated with the ith principal eigenvalue of R.

In the presence of noise in the model, Lemma 1 is still optimal in
yielding the least squares approximation error in the fitting.
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How to Get C,d?

Lemma 1 (Affine set fitting) [Chan’08]

Under (A2) and (A3), we can show that

A(C,d) = aff{x[1], . . . ,x[L]}.

Moreover, (C,d) can be obtained from x[1], . . . ,x[L] by

d =
1
L

L∑
n=1

x[n], C = [q1(UUT ), q2(UUT ), . . . , qN−1(UUT )],

where U = [ x[1]− d, . . . ,x[L]− d ] ∈ RM×L, and qi(R) denotes the
eigenvector associated with the ith principal eigenvalue of R.

Relationship to principal component analysis (PCA) [Jolliffe’86]

The operations of affine set fitting are exactly the same as PCA.

But affine set fitting has no statistical assumption, it is an outcome
of (deterministic) convex geometry.
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Dimension Reduction

Since x[n] ∈ A(C,d), its affine representation is

x[n] = Cx̃[n] + d ∈ RM .

Then the dimension-reduced pixel x̃[n] is given by

x̃[n] = CT (x[n]− d) =
N∑

i=1

si[n]αi ∈ RN−1,

where αi = CT (ai − d) is the ith dimension-reduced endmember.
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Convex Geometry

The convex hull of {α1, . . . ,αN} ⊂ RM is defined as:

conv{α1, . . . ,αN} =
{

x =
N∑

i=1

θiαi

∣∣∣∣ θ � 0,
N∑

i=1

θi = 1
}

A convex hull conv{α1, . . . ,αN} ∈ RM is called a simplex if
M = N − 1 & α1, . . . ,αN are affinely independent.

Recall x̃[n] =
∑N

i=1 si[n]αi, si[n] ≥ 0∀i, n,
∑N

i=1 si[n] = 1.

Lemma 2 (Simplex geometry) [Chan’09]

Under (A1), (A2), and (A3), all the x̃[1], . . . , x̃[L] are confined by a
simplex conv{α1, . . . ,αN}:

x̃[n] ∈ conv{α1, . . . ,αN} ⊂ RN−1, ∀n
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Simplex Geometry for Hyperspectral Unmixing

Question: Could we estimate α1, . . . ,αN from x̃[1], . . . , x̃[L]?
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One Possible Approach— Craig’s Belief

Formulation: Min. Volume Simplex Fitting [Chan’09] [Li-Bioucas’08]

min
β1,...,βN

V (β1, . . . ,βN )

s.t. x̃[n] ∈ conv{β1, . . . ,βN}, ∀ n,
(3)

where V (β1, . . . ,βN ) is the volume of conv{ν1, . . . ,νN}.

Inspired by Craig’s belief: find a minimum-volume simplex
enclosing all data points x̃[1], . . . , x̃[L]. [Craig’94].
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Craig’s belief is sound intuitively. But can we prove some theoretical
guarantee of it?

We prove a sufficient condition for the min. volume simplex problem
as follows.

Pure pixel assumption:

(A4) For each i ∈ {1, . . . , N}, there exists at least one pixel index `i

such that x[`i] = ai.

Theorem 1 (Endmember identifiability of Craig’s belief)

Under (A1)-(A4), the globally optimal solution of the min. simplex
volume problem is exactly α1, . . . ,αN , corresponding to the true
endmembers ai = Cαi + d.
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Another Possible Approach— Winter’s Belief

Formulation: Max. Volume Simplex Fitting

max
ν1,...,νN∈RN−1

V (ν1, . . . ,νN )

s.t. νi ∈ conv{x̃[1], . . . , x̃[L]}, ∀ i,
(4)

Inspired by Winter’s belief: find a maximum-volume simplex
enclosed by conv{x̃[1], . . . , x̃[L]} [Winter’99].
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Theorem 2 (Endmember identifiability of Winter’s belief)

Under (A1)-(A4), the globally optimal solution of max. simplex volume
problem is exactly α1, . . . ,αN , corresponding to the true endmembers
ai = Cαi + d.

By Theorem 1 and Theorem 2, we can conclude that

Relation between Craig’s and Winter’s beliefs

Both the min. & max. simplex volume problems can perfectly identify
the endmembers in the pure pixel case.
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Solving the Max. Simplex Volume Problem

Formulation: Maximum Volume Simplex Fitting

max
νi∈RN−1

θ1,...,θN∈RL

V (ν1, . . . ,νN )

s.t. νi = X̃θi, θi � 0, 1T
Lθi = 1 ∀ i,

where X̃ = [ x̃[1], . . . , x̃[L] ] ∈ R(N−1)×L.

The maximum simplex volume problem is a nonconvex optimization
problem: The constraints are convex, but the objective

V (ν1, . . . ,νN ) =
∣∣∣∣det

([
ν1 · · · νN

1 · · · 1

])∣∣∣∣ /(N − 1)!

is nonconcave.

Maximizing V (ν1, . . . ,νN ) w.r.t. each νi is however easy, with
convex optimization.
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Solving the Max. Simplex Volume Problem

Formulation: Maximum Volume Simplex Fitting

max
νi∈RN−1

θ1,...,θN∈RL

V (ν1, . . . ,νN )

s.t. νi = X̃θi, θi � 0, 1T
Lθi = 1 ∀ i,

where X̃ = [ x̃[1], . . . , x̃[L] ] ∈ R(N−1)×L.

By cofactor expansion,

V (ν1, . . . ,νN ) ∝
∣∣bT

j νj + (−1)N+jdet(VNj)
∣∣ ,

where bj & V ij are variables dependent on ν1, . . . ,νj−1,νj+1,
. . . , νN .

V (ν1, . . . ,νN ) is absolute affine w.r.t. each νj .

Maximization w.r.t. νj can be globally optimally solved by two
linear programs (LPs).
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Solving the Max. Simplex Volume Problem

Formulation: Maximum Volume Simplex Fitting

max
νi∈RN−1

θ1,...,θN∈RL

V (ν1, . . . ,νN )

s.t. νi = X̃θi, θi � 0, 1T
Lθi = 1 ∀ i,

where X̃ = [ x̃[1], . . . , x̃[L] ] ∈ R(N−1)×L.

Alternating Method

Repeat

solve the jth partial maximization problem

(ν̂j , θ̂j) := arg max
νj ,θj

V (ν1, . . . ,νN )

s.t. νj = X̃θj , θj � 0, 1T
Lθj = 1

by two LPs

update j := (j modulo N) + 1.

Until some stopping rule is satisfied.

19 / 26



Solving the Min. Simplex Volume Problem

Formulation: Minimum Volume Simplex Fitting

min
B, βN ,

s′[1],...,s′[L]

|det(B)|

s.t. s′[n] � 0, 1T
N−1s

′[n] ≤ 1,

x̃[n] = βN + Bs′[n], ∀ n = 1, . . . , L.

Let H = B−1 ∈ R(N−1)×(N−1) and g = B−1βN ∈ RN−1.
Then, s′[n] = B−1(x̃[n]− βN ) = Hx̃[n]− g.

Then the problem can be transformed as [Li-Bioucas’08], [Chan’09]

max
H, g

|det(H)|

s.t. Hx̃[n]− g � 0,

1T
N−1(Hx̃[n]− g) ≤ 1, ∀ n = 1, · · · , L.

(5)

We can use alternating linear programming again!
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Computer Simulations

100 Monte Carlo runs were performed.

x[n]: 1000 synthetic pixels (L = 1000).

a1, . . . ,aN : selected from USGS library (M = 417) [Clark’93].

s[n]: Dirichlet distribution [Nascimento’05].

Performence index: Root-mean-square spectral angle (error
performance measure) is defined as

φen = min
π∈ΠN

√√√√ 1
N

N∑
i=1

[
arccos

(
aT

i âπi

‖ai‖‖âπi
‖

)]2

φab = min
π∈ΠN

√√√√ 1
N

N∑
i=1

[
arccos

(
sT

i ŝπi

‖si‖‖ŝπi
‖

)]2

where ΠN is the set of all the permutations of {1, 2, ..., N}.†

†si = [ si[1], . . . , si[L] ]T denotes the ith abundance map, and âi and ŝi denote
the estimated ai and si, respectively.
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Simulations for Data with Various Purity Levels

Six endmembers (N = 6) from USGS library were selected.

We generated seven data sets with different purity levels
ρ = 0.7, 0.75, . . . , 1 for performance evaluation.

Purity level

A data set with purity level ρ denotes a set of L observed pixels with all
the purities ρ1, . . . , ρL in the range [ρ− 0.1, ρ], where

1√
N
≤ ρn = ‖s[n]‖ ≤ 1

is a purity measure for an observed pixel x[n](=
∑N

i=1 si[n]ai). The
closer to unity the value of ρn, the more a single endmember ai

dominates in x[n].

=⇒ The generated data for ρ = 1 includes some highly pure pixels.
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Figure: Simulation results of the endmember estimates obtained by the various
algorithms under test for different purity levels (φen).

0VCA: Vertex component analysis [Nascimento’05]

MVC-NMF: Minimum volume constrained nonnegative matrix factorization [Miao’07]
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Figure: Simulation results of the abundance estimates obtained by the various
algorithms under test for different purity levels (φab).

0MVSA: Minimum volume simplex analysis [Li-Bioucas’08]
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Conclusions

We have provided a convex analysis and optimization perspective to
hyperspectral unmixing, from dimension reduction, criteria, to
algorithms.

Open questions arising:

theoretical endmember identifiability conditions without pure
pixels (positive by simulations, but a tricky analysis problem...)

other possible formulations (using determinant as the objective
is not the only way out!)
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