Hyperspectral Unmixing from A Convex Analysis and Optimization Perspective

Tsung-Han Chan ${ }^{\dagger}$, Wing-Kin Ma^{*}, Chong-Yung Chi^{\dagger}, and A.ArulMurugan ${ }^{\dagger}$

${ }^{\dagger}$ Inst. of Commn. Eng., National Tsing Hua University, Taiwan Tel: +886-3-5731156, Fax: +886-3-5751787
E-mail: cychi@ee.nthu.edu.tw
*Dept. of Electronic Eng., Chinese Univ.of Hong Kong, Hong Kong Tel.: +852-31634350, Fax: +852-26035558
E-mail: wkma@ee.cuhk.edu.hk

IEEE WHISPERS 2009, 26-28 August, Grenoble, France.

Wireless Communications
\& Signal Processing Lab
National TSIng Hua University
Institute of Communications Engineering

The Theme: Use a convex analysis perspective to view hyperspectral linear unmixing.

- provide formulations \& new interpretations for
- dimension reduction
- Craig's belief [Craig'94]
- Winter's belief [Winter'09]
- Theory: prove that both Craig's \& Winter's beliefs are optimal in the pure-pixel case.
- Algorithms: develop convex optimization based approximations for Craig's \& Winter's beliefs.

Observed pixel vector: (linear mixing model)

$$
\begin{equation*}
\mathbf{x}[n]=\mathbf{A} \mathbf{s}[n]=\sum_{i=1}^{N} s_{i}[n] \mathbf{a}_{i}, \quad n=1, \ldots, L \tag{1}
\end{equation*}
$$

- $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right] \in \mathbb{R}^{M \times N}, \mathbf{a}_{i}$ is the i th endmember signature,
- $\mathbf{s}[n]=\left[s_{1}[n], \ldots, s_{N}[n]\right]^{T}$ is the abundance vector of pixel n,
- $M=$ no. of spectral bands, $N=$ no. of endmember signatures, \& $L=$ no. of pixels.

Observed pixel vector: (linear mixing model)

$$
\begin{equation*}
\mathbf{x}[n]=\mathbf{A s}[n]=\sum_{i=1}^{N} s_{i}[n] \mathbf{a}_{i}, \quad n=1, \ldots, L \tag{2}
\end{equation*}
$$

Some general assumptions:
(A1) (Non-negativity) $s_{i}[n] \geq 0$ for all i and n.
(A2) (Full-additivity) $\sum_{i=1}^{N} s_{i}[n]=1$ for all n.
(A3) $\min \{L, M\} \geq N$ and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ are linearly independent.

The affine hull of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\} \subset \mathbb{R}^{M}$ is defined as:

$$
\operatorname{aff}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}=\left\{\mathbf{x}=\sum_{i=1}^{N} \theta_{i} \mathbf{a}_{i} \mid \boldsymbol{\theta} \in \mathbb{R}^{N}, \sum_{i=1}^{N} \theta_{i}=1\right\} .
$$

An affine hull can always be represented by

$$
\mathcal{A}(\mathbf{C}, \mathbf{d}) \triangleq\left\{\mathbf{x}=\mathbf{C} \boldsymbol{\alpha}+\mathbf{d} \mid \boldsymbol{\alpha} \in \mathbb{R}^{P}\right\}
$$

for some $\mathbf{C} \in \mathbb{R}^{N \times P}, \mathbf{d} \in \mathbb{R}^{N}, \& P \leq N-1$.
Recall $\mathbf{x}[n]=\sum_{i=1}^{N} s_{i}[n] \mathbf{a}_{i}$. Under (A2) and (A3), we have

$$
\mathbf{x}[n] \in \operatorname{aff}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}=\mathcal{A}(\mathbf{C}, \mathbf{d}), \quad \forall n=1, \ldots, L
$$

with $P=N-1$.

Lemma 1 (Affine set fitting) [Chan'08]

Under (A2) and (A3), we can show that

$$
\mathcal{A}(\mathbf{C}, \mathbf{d})=\operatorname{aff}\{\mathbf{x}[1], \ldots, \mathbf{x}[L]\}
$$

Moreover, (\mathbf{C}, \mathbf{d}) can be obtained from $\mathbf{x}[1], \ldots, \mathbf{x}[L]$ by

$$
\mathbf{d}=\frac{1}{L} \sum_{n=1}^{L} \mathbf{x}[n], \quad \mathbf{C}=\left[\boldsymbol{q}_{1}\left(\mathbf{U U}^{T}\right), \boldsymbol{q}_{2}\left(\mathbf{U U}^{T}\right), \ldots, \boldsymbol{q}_{N-1}\left(\mathbf{U U}^{T}\right)\right],
$$

where $\mathbf{U}=[\mathbf{x}[1]-\mathbf{d}, \ldots, \mathbf{x}[L]-\mathbf{d}] \in \mathbb{R}^{M \times L}$, and $\boldsymbol{q}_{i}(\mathbf{R})$ denotes the eigenvector associated with the i th principal eigenvalue of \mathbf{R}.

- In the presence of noise in the model, Lemma 1 is still optimal in yielding the least squares approximation error in the fitting.

Lemma 1 (Affine set fitting) [Chan'08]

Under (A2) and (A3), we can show that

$$
\mathcal{A}(\mathbf{C}, \mathbf{d})=\operatorname{aff}\{\mathbf{x}[1], \ldots, \mathbf{x}[L]\}
$$

Moreover, (\mathbf{C}, \mathbf{d}) can be obtained from $\mathbf{x}[1], \ldots, \mathbf{x}[L]$ by

$$
\mathbf{d}=\frac{1}{L} \sum_{n=1}^{L} \mathbf{x}[n], \quad \mathbf{C}=\left[\boldsymbol{q}_{1}\left(\mathbf{U U}^{T}\right), \boldsymbol{q}_{2}\left(\mathbf{U U}^{T}\right), \ldots, \boldsymbol{q}_{N-1}\left(\mathbf{U U}^{T}\right)\right],
$$

where $\mathbf{U}=[\mathbf{x}[1]-\mathbf{d}, \ldots, \mathbf{x}[L]-\mathbf{d}] \in \mathbb{R}^{M \times L}$, and $\boldsymbol{q}_{i}(\mathbf{R})$ denotes the eigenvector associated with the i th principal eigenvalue of \mathbf{R}.

Relationship to principal component analysis (PCA) [Jolliffe'86]

- The operations of affine set fitting are exactly the same as PCA.
- But affine set fitting has no statistical assumption, it is an outcome of (deterministic) convex geometry.

Dimension Reduction

Since $\mathbf{x}[n] \in \mathcal{A}(\mathbf{C}, \mathbf{d})$, its affine representation is

$$
\mathbf{x}[n]=\mathbf{C} \tilde{\mathbf{x}}[n]+\mathbf{d} \in \mathbb{R}^{M} .
$$

Then the dimension-reduced pixel $\tilde{\mathbf{x}}[n]$ is given by

$$
\tilde{\mathbf{x}}[n]=\mathbf{C}^{T}(\mathbf{x}[n]-\mathbf{d})=\sum_{i=1}^{N} s_{i}[n] \boldsymbol{\alpha}_{i} \in \mathbb{R}^{N-1},
$$

where $\boldsymbol{\alpha}_{i}=\mathbf{C}^{T}\left(\mathbf{a}_{i}-\mathbf{d}\right)$ is the i th dimension-reduced endmember.

The convex hull of $\left\{\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}\right\} \subset \mathbb{R}^{M}$ is defined as:

$$
\operatorname{conv}\left\{\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}\right\}=\left\{\mathbf{x}=\sum_{i=1}^{N} \theta_{i} \boldsymbol{\alpha}_{i} \mid \boldsymbol{\theta} \succeq \mathbf{0}, \sum_{i=1}^{N} \theta_{i}=1\right\}
$$

A convex hull $\operatorname{conv}\left\{\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}\right\} \in \mathbb{R}^{M}$ is called a simplex if $M=N-1 \& \boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}$ are affinely independent.

Recall $\tilde{\mathbf{x}}[n]=\sum_{i=1}^{N} s_{i}[n] \boldsymbol{\alpha}_{i}, s_{i}[n] \geq 0 \forall i, n, \sum_{i=1}^{N} s_{i}[n]=1$.

Lemma 2 (Simplex geometry) [Chan'09]

Under (A1), (A2), and (A3), all the $\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]$ are confined by a simplex $\operatorname{conv}\left\{\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}\right\}$:

$$
\tilde{\mathbf{x}}[n] \in \operatorname{conv}\left\{\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}\right\} \subset \mathbb{R}^{N-1}, \forall n
$$

Question: Could we estimate $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}$ from $\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]$?

One Possible Approach— Craig's Belief

Formulation: Min. Volume Simplex Fitting [Chan'09] [Li-Bioucas'08]

$$
\begin{array}{rl}
\min _{\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{N}} & V\left(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{N}\right) \tag{3}\\
\text { s.t. } & \tilde{\mathbf{x}}[n] \in \operatorname{conv}\left\{\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{N}\right\}, \forall n,
\end{array}
$$

where $V\left(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{N}\right)$ is the volume of $\operatorname{conv}\left\{\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right\}$.

- Inspired by Craig's belief: find a minimum-volume simplex enclosing all data points $\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]$. [Craig'94].
- Craig's belief is sound intuitively. But can we prove some theoretical guarantee of it?
- We prove a sufficient condition for the min. volume simplex problem as follows.

Pure pixel assumption:

(A4) For each $i \in\{1, \ldots, N\}$, there exists at least one pixel index ℓ_{i} such that $\mathbf{x}\left[\ell_{i}\right]=\mathbf{a}_{i}$.

Theorem 1 (Endmember identifiability of Craig's belief)

Under (A1)-(A4), the globally optimal solution of the min. simplex volume problem is exactly $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}$, corresponding to the true endmembers $\mathbf{a}_{i}=\mathbf{C} \boldsymbol{\alpha}_{i}+\mathbf{d}$.

Another Possible Approach- Winter's Belief

Formulation: Max. Volume Simplex Fitting

$$
\begin{array}{rl}
\max _{\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N} \in \mathbb{R}^{N-1}} & V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right) \tag{4}\\
\text { s.t. } & \boldsymbol{\nu}_{i} \in \operatorname{conv}\{\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]\}, \forall i,
\end{array}
$$

- Inspired by Winter's belief: find a maximum-volume simplex enclosed by conv $\{\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]\}$ [Winter'99].

Theorem 2 (Endmember identifiability of Winter's belief)

Under (A1)-(A4), the globally optimal solution of max. simplex volume problem is exactly $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{N}$, corresponding to the true endmembers $\mathbf{a}_{i}=\mathbf{C} \boldsymbol{\alpha}_{i}+\mathbf{d}$.

By Theorem 1 and Theorem 2, we can conclude that
Relation between Craig's and Winter's beliefs
Both the min. \& max. simplex volume problems can perfectly identify the endmembers in the pure pixel case.

Formulation: Maximum Volume Simplex Fitting

$$
\begin{array}{rl}
\max _{\substack{\boldsymbol{\nu}_{i} \in \mathbb{R}^{N-1} \\
\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N} \in \mathbb{R}^{L}}} & V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right) \\
\text { s.t. } & \boldsymbol{\nu}_{i}=\tilde{\mathbf{X}} \boldsymbol{\theta}_{i}, \quad \boldsymbol{\theta}_{i} \succeq \mathbf{0}, \quad \mathbf{1}_{L}^{T} \boldsymbol{\theta}_{i}=1 \forall i,
\end{array}
$$

where $\tilde{\mathbf{X}}=[\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]] \in \mathbb{R}^{(N-1) \times L}$.

- The maximum simplex volume problem is a nonconvex optimization problem: The constraints are convex, but the objective

$$
V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right)=\left|\operatorname{det}\left(\left[\begin{array}{ccc}
\boldsymbol{\nu}_{1} & \cdots & \boldsymbol{\nu}_{N} \\
1 & \cdots & 1
\end{array}\right]\right)\right| /(N-1)!
$$

is nonconcave.

- Maximizing $V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right)$ w.r.t. each $\boldsymbol{\nu}_{i}$ is however easy, with convex optimization.

Formulation: Maximum Volume Simplex Fitting

$$
\begin{array}{rl}
\max _{\substack{\boldsymbol{\nu}_{i} \in \mathbb{R}^{N-1} \\
\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N} \in \mathbb{R}^{L}}} & V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right) \\
\text { s.t. } & \boldsymbol{\nu}_{i}=\tilde{\mathbf{X}} \boldsymbol{\theta}_{i}, \quad \boldsymbol{\theta}_{i} \succeq \mathbf{0}, \quad \mathbf{1}_{L}^{T} \boldsymbol{\theta}_{i}=1 \forall i,
\end{array}
$$

where $\tilde{\mathbf{X}}=[\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]] \in \mathbb{R}^{(N-1) \times L}$.

- By cofactor expansion,

$$
V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right) \propto\left|\mathbf{b}_{j}^{T} \boldsymbol{\nu}_{j}+(-1)^{N+j} \operatorname{det}\left(\boldsymbol{\mathcal { V }}_{N j}\right)\right|
$$

where $\mathbf{b}_{j} \& \mathcal{V}_{i j}$ are variables dependent on $\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{j-1}, \boldsymbol{\nu}_{j+1}$,
$\ldots, \boldsymbol{\nu}_{N}$.

- $V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right)$ is absolute affine w.r.t. each $\boldsymbol{\nu}_{j}$.
- Maximization w.r.t. $\boldsymbol{\nu}_{j}$ can be globally optimally solved by two linear programs (LPs).

Formulation: Maximum Volume Simplex Fitting

$$
\begin{array}{rl}
\max _{\substack{\boldsymbol{\nu}_{i} \in \mathbb{R}^{N-1} \\
\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N} \in \mathbb{R}^{L}}} & V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right) \\
\text { s.t. } & \boldsymbol{\nu}_{i}=\tilde{\mathbf{X}} \boldsymbol{\theta}_{i}, \quad \boldsymbol{\theta}_{i} \succeq \mathbf{0}, \quad \mathbf{1}_{L}^{T} \boldsymbol{\theta}_{i}=1 \forall i,
\end{array}
$$

where $\tilde{\mathbf{X}}=[\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]] \in \mathbb{R}^{(N-1) \times L}$.

Alternating Method

Repeat

solve the j th partial maximization problem

$$
\begin{aligned}
& \left(\hat{\boldsymbol{\nu}}_{j}, \hat{\boldsymbol{\theta}}_{j}\right):=\arg \max _{\boldsymbol{\nu}_{j}, \boldsymbol{\theta}_{j}} \quad V\left(\boldsymbol{\nu}_{1}, \ldots, \boldsymbol{\nu}_{N}\right) \\
& \quad \text { s.t. } \quad \boldsymbol{\nu}_{j}=\tilde{\mathbf{X}} \boldsymbol{\theta}_{j}, \quad \boldsymbol{\theta}_{j} \succeq \mathbf{0}, \quad \mathbf{1}_{L}^{T} \boldsymbol{\theta}_{j}=1
\end{aligned}
$$

> by two LPs
> update $j:=(j$ modulo $N)+1$.

Until some stopping rule is satisfied.

Formulation: Minimum Volume Simplex Fitting

$$
\begin{aligned}
\min _{\substack{\mathbf{B}, \boldsymbol{\beta}_{N}, \mathbf{s}^{\prime}[1], \ldots, \mathbf{s}^{\prime}[L]}} & |\operatorname{det}(\mathbf{B})| \\
\text { s.t. } & \mathbf{s}^{\prime}[n] \succeq \mathbf{0}, \mathbf{1}_{N-1}^{T} \mathbf{s}^{\prime}[n] \leq 1 \\
& \tilde{\mathbf{x}}[n]=\boldsymbol{\beta}_{N}+\mathbf{B s}^{\prime}[n], \forall n=1, \ldots, L .
\end{aligned}
$$

Let $\mathbf{H}=\mathbf{B}^{-1} \in \mathbb{R}^{(N-1) \times(N-1)}$ and $\mathbf{g}=\mathbf{B}^{-1} \boldsymbol{\beta}_{N} \in \mathbb{R}^{N-1}$.
Then, $\mathbf{s}^{\prime}[n]=\mathbf{B}^{-1}\left(\tilde{\mathbf{x}}[n]-\boldsymbol{\beta}_{N}\right)=\mathbf{H} \tilde{\mathbf{x}}[n]-\mathbf{g}$.
Then the problem can be transformed as [Li-Bioucas'08], [Chan'09]

$$
\begin{align*}
\max _{\mathbf{H}, \mathbf{g}} & |\operatorname{det}(\mathbf{H})| \\
\text { s.t. } & \mathbf{H} \tilde{\mathbf{x}}[n]-\mathbf{g} \succeq \mathbf{0}, \tag{5}\\
& \mathbf{1}_{N-1}^{T}(\mathbf{H} \tilde{\mathbf{x}}[n]-\mathbf{g}) \leq 1, \forall n=1, \cdots, L .
\end{align*}
$$

We can use alternating linear programming again!

- 100 Monte Carlo runs were performed.
- $\mathbf{x}[n]: 1000$ synthetic pixels $(L=1000)$.
- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$: selected from USGS library $(M=417)$ [Clark'93].
- $\mathbf{s}[n]$: Dirichlet distribution [Nascimento'05].
- Performence index: Root-mean-square spectral angle (error performance measure) is defined as

$$
\begin{aligned}
& \phi_{e n}=\min _{\boldsymbol{\pi} \in \Pi_{N}} \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left[\arccos \left(\frac{\mathbf{a}_{i}^{T} \hat{\mathbf{a}}_{\pi_{i}}}{\left\|\mathbf{a}_{i}\right\|\left\|\hat{\mathbf{a}}_{\pi_{i}}\right\|}\right)\right]^{2}} \\
& \phi_{a b}=\min _{\pi \in \Pi_{N}} \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left[\arccos \left(\frac{s_{i}^{T} \hat{\boldsymbol{s}}_{\pi_{i}}}{\left\|s_{i}\right\|\| \| \hat{s}_{\pi_{i}} \|}\right)\right]^{2}}
\end{aligned}
$$

where Π_{N} is the set of all the permutations of $\{1,2, \ldots, N\} .{ }^{\dagger}$

[^0]- Six endmembers $(N=6)$ from USGS library were selected.
- We generated seven data sets with different purity levels $\rho=0.7,0.75, \ldots, 1$ for performance evaluation.

Purity level

A data set with purity level ρ denotes a set of L observed pixels with all the purities $\rho_{1}, \ldots, \rho_{L}$ in the range $[\rho-0.1, \rho$], where

$$
\frac{1}{\sqrt{N}} \leq \rho_{n}=\|\mathbf{s}[n]\| \leq 1
$$

is a purity measure for an observed pixel $\mathbf{x}[n]\left(=\sum_{i=1}^{N} s_{i}[n] \mathbf{a}_{i}\right)$. The closer to unity the value of ρ_{n}, the more a single endmember \mathbf{a}_{i} dominates in $\mathbf{x}[n]$.
\Longrightarrow The generated data for $\rho=1$ includes some highly pure pixels.

Figure: Simulation results of the endmember estimates obtained by the various algorithms under test for different purity levels $\left(\phi_{e n}\right)$.

[^1]

Figure: Simulation results of the abundance estimates obtained by the various algorithms under test for different purity levels $\left(\phi_{a b}\right)$.

[^2]- We have provided a convex analysis and optimization perspective to hyperspectral unmixing, from dimension reduction, criteria, to algorithms.
- Open questions arising:
- theoretical endmember identifiability conditions without pure pixels (positive by simulations, but a tricky analysis problem...)
- other possible formulations (using determinant as the objective is not the only way out!)

Chan'08	T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, "A convex analysis framework for blind separation of non-negative sources," IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 5120-5134, Oct. 2008.
Chan'09	T.-H. Chan, C.-Y. Chi, Y.-M. Huang and W.-K. Ma, "A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," in International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, April 19-24, 2009, pp. 1089-1092.
Clark'93	R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, "The U.S. geological survey digital spectral library: version 1: 0.2 to $3.0 \mu \mathrm{~m}, "$ in U.S. Geol. Surv., Denver, CO., 1993, pp. 93-592.
Craig'94	M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
Jolliffe'86	I. T. Jolliffe, Principal Component Analysis. New York: Springer- Verlag, 1986.
Miao'07	L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
Li-Bioucas'08	J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE International Geoscience and Remote Sensing Symposium, vol. 4, Boston, MA, Aug. 8-12, 2008, pp. 2369-2371.
Nascimento'05	J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
Winter'99	M. E. Winter, " N -findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrometry, Pasadena, CA, Oct. 1999, pp. 266-275.
Strang'06	G. Strang, Linear Algebra and Its Application, 4th ed. CA: Thomson, 2006.

Thank You for Your Attention!

[^0]: ${ }^{\dagger} \boldsymbol{s}_{i}=\left[s_{i}[1], \ldots, s_{i}[L]\right]^{T}$ denotes the i th abundance map, and $\hat{\mathbf{a}}_{i}$ and $\hat{\boldsymbol{s}}_{i}$ denote the estimated \mathbf{a}_{i} and \boldsymbol{s}_{i}, respectively.

[^1]: ${ }^{0}$ VCA: Vertex component analysis [Nascimento'05]
 MVC-NMF: Minimum volume constrained nonnegative matrix factorization [Miao'07]

[^2]: ${ }^{0}$ MVSA: Minimum volume simplex analysis [Li-Bioucas'08]

