Hyperspectral Unmixing from A Convex Analysis and Optimization Perspective

Tsung-Han Chan[†], Wing-Kin Ma^{*}, Chong-Yung Chi[†], and A.ArulMurugan[†]

 [†]Inst. of Commn. Eng., National Tsing Hua University, Taiwan Tel: +886-3-5731156, Fax: +886-3-5751787 E-mail: cychi@ee.nthu.edu.tw
 *Dept. of Electronic Eng., Chinese Univ.of Hong Kong, Hong Kong Tel.: +852-31634350, Fax: +852-26035558 E-mail: wkma@ee.cuhk.edu.hk

IEEE WHISPERS 2009, 26-28 August, Grenoble, France.

The Theme: Use a convex analysis perspective to view hyperspectral linear unmixing.

- provide formulations & new interpretations for
 - dimension reduction
 - Craig's belief [Craig'94]
 - Winter's belief [Winter'99]
- **Theory:** prove that both Craig's & Winter's beliefs are optimal in the pure-pixel case.
- Algorithms: develop convex optimization based approximations for Craig's & Winter's beliefs.

Problem Statement for Hyperspectral Unmixing

Observed pixel vector: (linear mixing model)

$$\mathbf{x}[n] = \mathbf{As}[n] = \sum_{i=1}^{N} s_i[n] \mathbf{a}_i, \qquad n = 1, \dots, L$$
(1)

• $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_N] \in \mathbb{R}^{M imes N}$, \mathbf{a}_i is the ith endmember signature,

- $\mathbf{s}[n] = [s_1[n], \dots, s_N[n]]^T$ is the abundance vector of pixel n,
- M = no. of spectral bands, N = no. of endmember signatures, & L = no. of pixels.

Problem Statement for Hyperspectral Unmixing

Observed pixel vector: (linear mixing model)

$$\mathbf{x}[n] = \mathbf{As}[n] = \sum_{i=1}^{N} s_i[n] \mathbf{a}_i, \qquad n = 1, \dots, L$$
(2)

Some general assumptions:

- (A1) (Non-negativity) $s_i[n] \ge 0$ for all i and n.
- (A2) (Full-additivity) $\sum_{i=1}^{N} s_i[n] = 1$ for all n.
- (A3) $\min\{L, M\} \ge N$ and $\mathbf{a}_1, \ldots, \mathbf{a}_N$ are linearly independent.

Affine Hull

The affine hull of $\{\mathbf{a}_1,\ldots,\mathbf{a}_N\}\subset\mathbb{R}^M$ is defined as:

aff {
$$\mathbf{a}_1, \dots, \mathbf{a}_N$$
} = $\left\{ \mathbf{x} = \sum_{i=1}^N \theta_i \mathbf{a}_i \mid \boldsymbol{\theta} \in \mathbb{R}^N, \sum_{i=1}^N \theta_i = 1 \right\}$.

An affine hull can always be represented by

$$\mathcal{A}(\mathbf{C},\mathbf{d}) riangleq \left\{ egin{array}{l} \mathbf{x} = \mathbf{C} oldsymbol{lpha} + \mathbf{d} ig| oldsymbol{lpha} \in \mathbb{R}^P \end{array}
ight\}$$

for some $\mathbf{C} \in \mathbb{R}^{N \times P}$, $\mathbf{d} \in \mathbb{R}^N$, & $P \leq N - 1$.

Recall $\mathbf{x}[n] = \sum_{i=1}^{N} s_i[n] \mathbf{a}_i$. Under (A2) and (A3), we have

$$\mathbf{x}[n] \in \operatorname{aff}\{\mathbf{a}_1, \dots, \mathbf{a}_N\} = \mathcal{A}(\mathbf{C}, \mathbf{d}), \quad \forall n = 1, \dots, L,$$

with P = N - 1.

An Geometry Illustration for N = 3

An Geometry Illustration for ${\cal N}=3$

Lemma 1 (Affine set fitting) [Chan'08]

Under (A2) and (A3), we can show that

```
\mathcal{A}(\mathbf{C},\mathbf{d}) = \operatorname{aff}\{\mathbf{x}[1],\ldots,\mathbf{x}[L]\}.
```

Moreover, (\mathbf{C},\mathbf{d}) can be obtained from $\mathbf{x}[1],\ldots,\mathbf{x}[L]$ by

$$\mathbf{d} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{x}[n], \quad \mathbf{C} = [\boldsymbol{q}_1(\mathbf{U}\mathbf{U}^T), \boldsymbol{q}_2(\mathbf{U}\mathbf{U}^T), \dots, \boldsymbol{q}_{N-1}(\mathbf{U}\mathbf{U}^T)],$$

where $\mathbf{U} = [\mathbf{x}[1] - \mathbf{d}, \dots, \mathbf{x}[L] - \mathbf{d}] \in \mathbb{R}^{M \times L}$, and $q_i(\mathbf{R})$ denotes the eigenvector associated with the *i*th principal eigenvalue of \mathbf{R} .

• In the presence of noise in the model, Lemma 1 is still optimal in yielding the least squares approximation error in the fitting.

How to Get \mathbf{C}, \mathbf{d} ?

Lemma 1 (Affine set fitting) [Chan'08]

Under (A2) and (A3), we can show that

 $\mathcal{A}(\mathbf{C},\mathbf{d}) = \operatorname{aff}\{\mathbf{x}[1],\ldots,\mathbf{x}[L]\}.$

Moreover, (\mathbf{C},\mathbf{d}) can be obtained from $\mathbf{x}[1],\ldots,\mathbf{x}[L]$ by

$$\mathbf{d} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{x}[n], \quad \mathbf{C} = [\boldsymbol{q}_1(\mathbf{U}\mathbf{U}^T), \boldsymbol{q}_2(\mathbf{U}\mathbf{U}^T), \dots, \boldsymbol{q}_{N-1}(\mathbf{U}\mathbf{U}^T)]$$

where $\mathbf{U} = [\mathbf{x}[1] - \mathbf{d}, \dots, \mathbf{x}[L] - \mathbf{d}] \in \mathbb{R}^{M \times L}$, and $q_i(\mathbf{R})$ denotes the eigenvector associated with the *i*th principal eigenvalue of \mathbf{R} .

Relationship to principal component analysis (PCA) [Jolliffe'86]

- The operations of affine set fitting are exactly the same as PCA.
- But affine set fitting has no statistical assumption, it is an outcome of (deterministic) convex geometry.

Dimension Reduction

Since $\mathbf{x}[n] \in \mathcal{A}(\mathbf{C}, \mathbf{d}),$ its affine representation is

$$\mathbf{x}[n] = \mathbf{C}\tilde{\mathbf{x}}[n] + \mathbf{d} \in \mathbb{R}^M.$$

Then the dimension-reduced pixel $\tilde{\mathbf{x}}[n]$ is given by

$$\tilde{\mathbf{x}}[n] = \mathbf{C}^T(\mathbf{x}[n] - \mathbf{d}) = \sum_{i=1}^N s_i[n] \boldsymbol{\alpha}_i \in \mathbb{R}^{N-1},$$

where $\mathbf{\alpha}_i = \mathbf{C}^T(\mathbf{a}_i - \mathbf{d})$ is the *i*th dimension-reduced endmember.

Convex Geometry

The convex hull of $\{ \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_N \} \subset \mathbb{R}^M$ is defined as:

$$\operatorname{conv}\{\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_N\} = \left\{ \left| \mathbf{x} = \sum_{i=1}^N \theta_i \boldsymbol{\alpha}_i \right| \boldsymbol{\theta} \succeq \mathbf{0}, \sum_{i=1}^N \theta_i = 1 \right\}$$

A convex hull $\operatorname{conv}\{\alpha_1, \ldots, \alpha_N\} \in \mathbb{R}^M$ is called a simplex if $M = N - 1 \& \alpha_1, \ldots, \alpha_N$ are affinely independent.

Recall $\tilde{\mathbf{x}}[n] = \sum_{i=1}^{N} s_i[n] \boldsymbol{\alpha}_i$, $s_i[n] \ge 0 \forall i, n, \sum_{i=1}^{N} s_i[n] = 1$.

Lemma 2 (Simplex geometry) [Chan'09]

Under (A1), (A2), and (A3), all the $\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]$ are confined by a simplex conv $\{\alpha_1, \ldots, \alpha_N\}$:

 $\tilde{\mathbf{x}}[n] \in \operatorname{conv}{\{\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_N\}} \subset \mathbb{R}^{N-1}, \ \forall n$

Simplex Geometry for Hyperspectral Unmixing

Question: Could we estimate $\alpha_1, \ldots, \alpha_N$ from $\tilde{\mathbf{x}}[1], \ldots, \tilde{\mathbf{x}}[L]$?

One Possible Approach— Craig's Belief

 Inspired by Craig's belief: find a minimum-volume simplex enclosing all data points x
 [1],..., x

- Craig's belief is sound intuitively. But can we prove some theoretical guarantee of it?
- We prove a sufficient condition for the min. volume simplex problem as follows.

Pure pixel assumption:

(A4) For each $i \in \{1, ..., N\}$, there exists at least one pixel index ℓ_i such that $\mathbf{x}[\ell_i] = \mathbf{a}_i$.

Theorem 1 (Endmember identifiability of Craig's belief)

Under (A1)-(A4), the globally optimal solution of the min. simplex volume problem is exactly $\alpha_1, \ldots, \alpha_N$, corresponding to the true endmembers $\mathbf{a}_i = \mathbf{C} \boldsymbol{\alpha}_i + \mathbf{d}$.

Another Possible Approach— Winter's Belief

Inspired by Winter's belief: find a maximum-volume simplex enclosed by conv{x[1],...,x[L]} [Winter'99].

Theorem 2 (Endmember identifiability of Winter's belief)

Under (A1)-(A4), the globally optimal solution of max. simplex volume problem is exactly $\alpha_1, \ldots, \alpha_N$, corresponding to the true endmembers $\mathbf{a}_i = \mathbf{C} \boldsymbol{\alpha}_i + \mathbf{d}$.

By Theorem 1 and Theorem 2, we can conclude that

Relation between Craig's and Winter's beliefs

Both the min. & max. simplex volume problems can perfectly identify the endmembers in the pure pixel case.

Solving the Max. Simplex Volume Problem

Formulation: Maximum Volume Simplex Fitting

$$\begin{split} \max_{\substack{\boldsymbol{\nu}_i \in \mathbb{R}^{N-1} \\ \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_N \in \mathbb{R}^L }} & V(\boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_N) \\ \mathbf{s.t.} & \mathbf{v}_i = \tilde{\mathbf{X}} \boldsymbol{\theta}_i, \quad \boldsymbol{\theta}_i \succeq \mathbf{0}, \quad \mathbf{1}_L^T \boldsymbol{\theta}_i = 1 \; \forall \; i, \end{split} \\ \text{where } \tilde{\mathbf{X}} = [\; \tilde{\mathbf{x}}[1], \dots, \tilde{\mathbf{x}}[L] \;] \in \mathbb{R}^{(N-1) \times L}. \end{split}$$

• The maximum simplex volume problem is a nonconvex optimization problem: The constraints are convex, but the objective

$$V(\boldsymbol{\nu}_1,\ldots,\boldsymbol{\nu}_N) = \left| \det \left(\left[\begin{array}{ccc} \boldsymbol{\nu}_1 & \cdots & \boldsymbol{\nu}_N \\ 1 & \cdots & 1 \end{array} \right] \right) \right| / (N-1)!$$

is nonconcave.

Maximizing V(\u03c61,...,\u03c62) w.r.t. each \u03c6i is however easy, with convex optimization.

Solving the Max. Simplex Volume Problem

Formulation: Maximum Volume Simplex Fitting

$$\begin{split} \max_{\substack{\boldsymbol{\nu}_i \in \mathbb{R}^{N-1} \\ \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_N \in \mathbb{R}^L}} & V(\boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_N) \\ \mathbf{s}_i \in \mathbb{R}^{N-1} \\ \text{ s.t. } & \boldsymbol{\nu}_i = \tilde{\mathbf{X}} \boldsymbol{\theta}_i, \quad \boldsymbol{\theta}_i \succeq \mathbf{0}, \quad \mathbf{1}_L^T \boldsymbol{\theta}_i = 1 \ \forall \ i, \end{split}$$
where $\tilde{\mathbf{X}} = [\ \tilde{\mathbf{x}}[1], \dots, \tilde{\mathbf{x}}[L] \] \in \mathbb{R}^{(N-1) \times L}.$

• By cofactor expansion,

$$V(\boldsymbol{\nu}_1,\ldots,\boldsymbol{\nu}_N) \propto \left| \mathbf{b}_j^T \boldsymbol{\nu}_j + (-1)^{N+j} \det(\boldsymbol{\mathcal{V}}_{Nj}) \right|,$$

where $\mathbf{b}_j \& \mathcal{V}_{ij}$ are variables dependent on $\boldsymbol{\nu}_1, \ldots, \boldsymbol{\nu}_{j-1}, \boldsymbol{\nu}_{j+1}, \ldots, \boldsymbol{\nu}_N$.

- $V(\boldsymbol{\nu}_1, \ldots, \boldsymbol{\nu}_N)$ is absolute affine w.r.t. each $\boldsymbol{\nu}_j$.
- Maximization w.r.t. ν_j can be globally optimally solved by two linear programs (LPs).

Solving the Max. Simplex Volume Problem

Formulation: Maximum Volume Simplex Fitting

 $\max_{\boldsymbol{\nu}_i \in \mathbb{R}^{N-1}} \quad V(\boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_N)$ $\boldsymbol{\theta}_1, \ldots, \boldsymbol{\theta}_N \in \mathbb{R}^L$ s.t. $\boldsymbol{\nu}_i = \tilde{\mathbf{X}}\boldsymbol{\theta}_i, \quad \boldsymbol{\theta}_i \succeq \mathbf{0}, \quad \mathbf{1}_T^T \boldsymbol{\theta}_i = 1 \ \forall i,$ where $\tilde{\mathbf{X}} = [\tilde{\mathbf{x}}[1], \dots, \tilde{\mathbf{x}}[L]] \in \mathbb{R}^{(N-1) \times L}$.

Alternating Method

Repeat

solve the jth partial maximization problem $(\hat{\boldsymbol{\nu}}_j, \hat{\boldsymbol{\theta}}_j) := \arg \max_{\boldsymbol{\nu}_j, \boldsymbol{\theta}_j} V(\boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_N)$ s.t. $\boldsymbol{\nu}_i = \tilde{\mathbf{X}}\boldsymbol{\theta}_i, \ \boldsymbol{\theta}_i \succeq \mathbf{0}, \ \mathbf{1}_I^T \boldsymbol{\theta}_i = 1$

by two LPs

update $i := (i \mod N) + 1$.

Until some stopping rule is satisfied.

Solving the Min. Simplex Volume Problem

Formulation: Minimum Volume Simplex Fitting

$$\min_{\substack{\mathbf{B}, \ \boldsymbol{\beta}_{N}, \\ \mathbf{s}'[1], \dots, \mathbf{s}'[L]}} |\det(\mathbf{B})|$$
s.t. $\mathbf{s}'[n] \succeq \mathbf{0}, \ \mathbf{1}_{N-1}^{T} \mathbf{s}'[n] \leq 1,$
 $\tilde{\mathbf{x}}[n] = \boldsymbol{\beta}_{N} + \mathbf{Bs}'[n], \ \forall \ n = 1, \dots, L.$

Let
$$\mathbf{H} = \mathbf{B}^{-1} \in \mathbb{R}^{(N-1) \times (N-1)}$$
 and $\mathbf{g} = \mathbf{B}^{-1} \boldsymbol{\beta}_N \in \mathbb{R}^{N-1}$.
Then, $\mathbf{s}'[n] = \mathbf{B}^{-1}(\tilde{\mathbf{x}}[n] - \boldsymbol{\beta}_N) = \mathbf{H}\tilde{\mathbf{x}}[n] - \mathbf{g}$.

Then the problem can be transformed as [Li-Bioucas'08], [Chan'09]

$$\max_{\mathbf{H}, \mathbf{g}} |\det(\mathbf{H})|$$
s.t.
$$\mathbf{H}\tilde{\mathbf{x}}[n] - \mathbf{g} \succeq \mathbf{0},$$

$$\mathbf{1}_{N-1}^{T}(\mathbf{H}\tilde{\mathbf{x}}[n] - \mathbf{g}) \le 1, \forall n = 1, \cdots, L.$$

$$(5)$$

We can use alternating linear programming again!

Computer Simulations

- 100 Monte Carlo runs were performed.
- $\mathbf{x}[n]$: 1000 synthetic pixels (L = 1000).
- $\mathbf{a}_1, \ldots, \mathbf{a}_N$: selected from USGS library (M = 417) [Clark'93].
- **s**[*n*]: Dirichlet distribution [Nascimento'05].
- **Performence index:** Root-mean-square spectral angle (error performance measure) is defined as

$$\phi_{en} = \min_{\boldsymbol{\pi} \in \Pi_N} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[\arccos\left(\frac{\mathbf{a}_i^T \hat{\mathbf{a}}_{\pi_i}}{\|\mathbf{a}_i\| \| \hat{\mathbf{a}}_{\pi_i} \|} \right) \right]^2}$$
$$\phi_{ab} = \min_{\boldsymbol{\pi} \in \Pi_N} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[\arccos\left(\frac{\mathbf{s}_i^T \hat{\mathbf{s}}_{\pi_i}}{\|\mathbf{s}_{\pi_i}\|} \right) \right]^2}$$

where Π_N is the set of all the permutations of $\{1, 2, ..., N\}$.[†]

 $^{{}^{\}dagger}s_i = [s_i[1], \dots, s_i[L]]^T$ denotes the *i*th abundance map, and $\hat{\mathbf{a}}_i$ and \hat{s}_i denote the estimated \mathbf{a}_i and s_i , respectively.

Simulations for Data with Various Purity Levels

- Six endmembers (N = 6) from USGS library were selected.
- We generated seven data sets with different purity levels $\rho = 0.7, 0.75, \dots, 1$ for performance evaluation.

Purity level

A data set with *purity level* ρ denotes a set of L observed pixels with all the purities ρ_1, \ldots, ρ_L in the range $[\rho - 0.1, \rho]$, where

$$\frac{1}{\sqrt{N}} \le \rho_n = \|\mathbf{s}[n]\| \le 1$$

is a purity measure for an observed pixel $\mathbf{x}[n] (= \sum_{i=1}^{N} s_i[n] \mathbf{a}_i)$. The closer to unity the value of ρ_n , the more a single endmember \mathbf{a}_i dominates in $\mathbf{x}[n]$.

 \implies The generated data for $\rho = 1$ includes some highly pure pixels.

Figure: Simulation results of the endmember estimates obtained by the various algorithms under test for different purity levels (ϕ_{en}).

MVC-NMF: Minimum volume constrained nonnegative matrix factorization [Miao'07]

⁰VCA: Vertex component analysis [Nascimento'05]

Figure: Simulation results of the abundance estimates obtained by the various algorithms under test for different purity levels (ϕ_{ab}).

⁰MVSA: Minimum volume simplex analysis [Li-Bioucas'08]

- We have provided a convex analysis and optimization perspective to hyperspectral unmixing, from dimension reduction, criteria, to algorithms.
- Open questions arising:
 - theoretical endmember identifiability conditions without pure pixels (positive by simulations, but a tricky analysis problem...)
 - other possible formulations (using determinant as the objective is not the only way out!)

References

Chan'08	TH. Chan, WK. Ma, CY. Chi, and Y. Wang, "A convex analysis framework for blind separation of non-negative sources," <i>IEEE Trans. Signal Processing</i> , vol. 56, no. 10, pp. 5120-5134, Oct. 2008.
Chan'09	TH. Chan, CY. Chi, YM. Huang and WK. Ma, "A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," in <i>International Conference on Acoustics, Speech and Signal Processing</i> , Taipei, Taiwan, April 19-24, 2009, pp. 1089-1092.
Clark'93	R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, "The U.S. geological survey digital spectral library: version 1: 0.2 to 3.0 μ m," in U.S. Geol. Surv., Denver, CO., 1993, pp. 93-592.
Craig'94	M. D. Craig, "Minimum-volume transforms for remotely sensed data," <i>IEEE Trans. Geosci. Remote Sens.</i> , vol. 32, no. 3, pp. 542-552, May 1994.
Jolliffe'86	I. T. Jolliffe, Principal Component Analysis. New York: Springer- Verlag, 1986.
Miao'07	L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," <i>IEEE Trans. Geosci. Remote Sens.</i> , vol. 45, no. 3, pp. 765–777, Mar. 2007.
Li-Bioucas'08	J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in <i>Proc. IEEE International Geoscience and Remote Sensing Symposium</i> , vol. 4, Boston, MA, Aug. 8-12, 2008, pp. 2369-2371.
Nascimento'05	J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," <i>IEEE Trans. Geosci. Remote Sens.</i> , vol. 43, no. 4, pp. 898-910, Apr. 2005.
Winter'99	M. E. Winter, "N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in <i>Proc. SPIE Conf. Imaging Spectrometry</i> , Pasadena, CA, Oct. 1999, pp. 266–275.
Strang'06	G. Strang, Linear Algebra and Its Application, 4th ed. CA: Thomson, 2006.

Thank You for Your Attention!